On the sloshing free surface in the draft tube cone of a Francis turbine operating in synchronous condenser mode

ثبت نشده
چکیده

Hydropower plants may be required to operate in synchronous condenser mode in order to supply reactive power to the grid for compensating the fluctuations introduced by the intermittent renewable energies such wind and solar. When operating in this mode, the tail water in the Francis turbine or pump-turbine is depressed below the runner by injecting pressurized air in order to spin in air to reduce the power consumption. Many air-water interaction phenomena occur in the machine causing air losses and a consequent power consumption to recover the air lost. In this paper, the experimental investigation of the sloshing motion in the cone of a dewatered Francis turbine performed by image visualization and pressure measurements is presented. The developed image post processing method for identifying the amplitude and frequency of the oscillation of the free surface is described and the results obtained are illustrated and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Numerical Study of a Pipe Extension Effect in Draft Tube on Hydraulic Turbine Performance

Draft tube of Francis type hydraulic turbine usually consists of: cone, elbow and diffuser. On the contrary, in some power stations an extra pipe should be added to the draft tube at the bottom of cone because of installation limitation. In this paper, this special case has been numerically studied. To this end CFD analysis was applied to simulate all parts of hydraulic turbine. A homogeneous m...

متن کامل

Interaction of a pulsating vortex rope with the local velocity field in a Francis turbine draft tube

Acoustic resonances in Francis turbines often define undesirable limitations to their operating ranges at high load. The knowledge of the mechanisms governing the onset and the sustenance of these instabilities in the swirling flow leaving the runner is essential for the development of a reliable hydroacoustic model for the prediction of system stability. The present work seeks to study experim...

متن کامل

Numerical simulation of a cavitating draft tube vortex rope in a Francis turbine at part load conditions for different σ-levels

In the present study, numerical investigations of a Francis turbine at model scale are performed. A part load operating point is selected for the analysis with a focus on the cavitating draft tube vortex rope. For three σ-levels, different aspects are investigated. First, the extension of the vapor volume is analyzed and compared to high-speed visualization recordings from the measurements. Fur...

متن کامل

Methodology for Risk Assessment of Part Load Resonance in Francis Turbine Power Plant

At low flow rate operation, Francis turbines feature a cavitating vortex rope in the draft tube resulting from the swirling flow of the runner outlet. The unsteady pressure field related to the precession of the vortex rope induces plane wave propagating in the entire hydraulic system. The frequency of the vortex rope precession being comprised between 0.2 and 0.4 times the turbine rotational s...

متن کامل

Numerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method

Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH)....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016